Agenda & Meeting Objectives

Agenda:
1. Planning Process Update
2. Master Plan Goals + Strategies
3. Preliminary Master Plan
4. District Level Initiatives
5. Campus Landscape Guidelines
6. Next Steps

Meeting Objectives:
• Present Preliminary Draft Master Plan
 o Preliminary Master Plan
 o District Level Initiatives
 o Campus Design + Landscape Guidelines
• Obtain Feedback
 o Committee Meetings
 o Community Open Houses
 o Master Plan Website
1
PLANNING PROCESS UPDATE
Previous Campus Visit - Alternatives

Alternative 1
Science Corridor

Alternative 2
Arts & Innovation Gateway, P3 Opportunity

Alternative 3
Two New Campus Districts
Synthesis of Ideas:

- Maintain cultural centers in place and expand sciences to the north along Mathews Avenue
- Create a stronger campus identity, more pedestrian focused in the area west of Wright Street
- Enhance open space and east-west non-motorized connections, particularly along the Military Axis
- Identify infill development sites to maintain a compact, dense and walkable central campus
- Reposition ACES facilities to strengthen brand thru development of a “Legacy Corridor” and allow other units to expand in place
- Promote interdisciplinary collaboration thru shared facilities for both academics and research
2

MASTER PLAN GOALS AND STRATEGIES
Master Planning Goals

• Provide an updated planning framework to guide anticipated future enrollment growth and campus development.

• Promote excellence in academics, research, student life, and the campus environment thru physical planning initiatives and strategic reinvestment efforts.

• Achieve “no new net square footage growth” thru better space utilization, increased interdisciplinary collaboration, improved maintenance of facilities, and responsible funding.

• Continue to foster and enhance the overall beautification of the physical campus environs.

• Maintain a strong image of accessibility and safety across campus – particularly for pedestrians.

• Recognize and celebrate the cultural diversity and international quality of the campus.

• Strengthen connections and partnerships between campus and community.
Future Development

Assumes an Average 1% Annual Enrollment Growth for Next Ten Years

<table>
<thead>
<tr>
<th>Fall 2015</th>
<th>Fall 2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>43,402 FTE</td>
<td>47,943 FTE</td>
</tr>
</tbody>
</table>

Undergraduate, Graduate, and Professional. FTE = Full-time Equivalent student.

- **4,540 additional students**

Existing Facilities:

- **23 Million Gross Square Feet**

Projected Facility Demand:

- **Up to 2 Million Additional Gross Square Feet at Existing SF/Student**
- Does not include Replacement Space.
Balancing Net Zero and Future Development

Preliminary Strategies

1. **Reduce Demand - No Net New Square Feet for Classrooms, Class Labs**
 a. Share Space - Put More Classrooms and Class Labs into Centralized Scheduling
 b. Increase Classroom and Class Lab Utilization
 c. Consolidate Storage, Increase Efficiency, Demo Surplus Facilities

2. **No Net New Square Feet for Office Space**
 a. Consolidate, Renovate, Convert and/or Replace Existing Office Space
 b. Look at New Models of Work Environments

3. **Improve Research Lab/Office Utilization and Efficiency**
 a. Increase Utilization by 6% (Reduce NASF/PI from 2,100 to 1,980 NASF)
 b. Improve, Renovate, and/or Replace Existing Underutilized Lab Space
 c. Share Core Lab and Lab Resources Campus-Wide

4. **Renovate and Reinvest, or Re-purpose Space**
 a. Renovate or Re-purpose Underperforming Academic and Research Space
 b. Invest in Modernizing Teaching Space, IT and Support Systems

5. **Replace or Remove Outdated Facilities**
 a. Replace with Greater Flexibility, Energy Efficiency
 b. Demo and Remove Obsolete Facilities in Poor Condition - Bank the Square Footage in the Space Bank
Reduce Demand
Increase Utilization of Existing Space, Share Resources

Improve Classroom Utilization
- Average utilization is 63% for centrally scheduled space (lower for department-controlled space)
- 45-hour time period, 8 am – 5 pm, M-F
- Utilization ranges from 18% to 117%

Improve Class Lab Utilization
- Average utilization is 69%
- Utilization ranges from 18% to 107%
Renovate and Reinvest

Evaluation Factors & Criteria

1. Age, Overall Square Footage
2. Replacement Value
3. Facility Condition Index – Poor to Critical Condition
4. Educational Adequacy Evaluation
5. Number of Classrooms / Class Labs in Facility
6. Utilization
7. Energy Use Intensity
8. Energy Performance Index

*Individual facility scope and area of renovations to be determined
Renovate and Reinvest

Evaluation Factors & Criteria

1. Age, Overall Square Footage
2. Replacement Value
3. Facility Condition Index – Poor to Critical Condition
4. Educational Adequacy Evaluation
5. Number of Classrooms / Class Labs in Facility
6. Utilization
7. Energy Use Intensity
8. Energy Performance Index

- Renovation
- Major Renovation & / or Additions
- Potential Renovation / Conversion
- Removal
Repurpose

Convert Existing Facilities

- Convert existing use of facility to a less energy intensive or more appropriate use for the building type

- Example Facilities:
 - Kenney Gym
 - Transportation and Ceramics Buildings
 - Stock Pavilion
 - Natural Resources Building
Replace or Remove

- Replace Underutilized and/or Outdated Facilities with New Facilities for Greater Flexibility, Energy Efficiency

- Demo and Remove Obsolete Facilities in Poor Condition - Bank the Square Footage for Future Use
Replace or Remove

- Replace Underutilized and/or Outdated Facilities with New Facilities for Greater Flexibility, Energy Efficiency
- Demo and Remove Obsolete Facilities in Poor Condition - Bank the Square Footage for Future Use

Remove

Remove & Replace
Research Renovation Strategy

Research Facility Assessment - Evaluation Factors & Criteria

1. Age, Overall Square Footage
2. Replacement Value
3. Facility Condition Index – Poor to Critical Condition
4. Energy Use Intensity
5. Energy Performance Index
6. System Deficiencies Reports
7. Facility Manager Priorities
8. Facility Configuration - Flexibility / Adaptability
 (review of floor plans, some observations)
Research Renovation Strategy – Evaluation Process

Civil Engineering
Bldg. #24-1 Circa 1967

Facility Condition Assessment

- Repair Cost $12,628,000 FY 2011
- Replacement Cost $71,422,800

- FCI - .18- Fair
- Systems cost update $16,089,300 FY 2012
- Escalate to FY2017

Systems Deficiencies

- Assessment Deficiencies 186,322 GSF

Facility Configuration

- Lab, Office, High Bay
- Custom Planning
- Minimal Versatility

Recommendation

- Major Renovation
- Phased Implementation

Engineering Project request

- $4,000,000
Facility Condition Index / Energy Performance Matrix

Quadrant I
Least Desirable

Quadrant II
Good Condition / Poor Energy Performance

Quadrant III
Most Desirable

Quadrant IV
Good Condition / Poor Energy Performance

UIUC Assessment
- Good
- Poor
- Critical

Research Lab Legend

- Building ID
- Name
-

- Excellent (8-10)
- Good (5-14)
- Fair (10-20)
- Poor (20-50)
- Critical (50+)

- Facility Condition Index (FCI)
Research Renovation Strategy

Renovation v. Replacement Scorecard:

Facility Condition Index < 75
- Yes, Renovate

Facility Condition Index > 75
- No, Replace

Facility Condition Index = Repair Cost / Replacement Cost x 100

1. Earlier occupancy for programs groups
2. Appreciable initial capital cost savings
3. Proposed program uses less complex than existing uses
4. Structural capacity is appropriate to code and functions
5. ADA code requirements needing upgrades
6. MEP systems require minor upgrades
7. Energy upgrades possible with minor modifications
8. Existing conditions index greater than 50 points
9. Facility has surge space for program relocation & phasing
10. Facility has adequate systems capacity with minor upgrades

Condition Index
- 75 - 100 Tipping Point
- 100
- 75
- 50
- 25
- 10

Condition Index
- Build New
- Repurpose
- Renovate
<table>
<thead>
<tr>
<th>Renovations</th>
<th>Major Renovation &/or Additions</th>
<th>Potential Renovation / Conversion</th>
<th>Demolition/Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACES:</td>
<td></td>
<td></td>
<td>ACES:</td>
</tr>
<tr>
<td>• Madigan Laboratory</td>
<td>• NCSA East Wing Expansion</td>
<td>• Dairy (Conversion to Equine Use)</td>
<td>• Feed Mill Replacement</td>
</tr>
<tr>
<td>Engineering:</td>
<td>• Hydrosystems Lab/Addition</td>
<td>• Agricultural Bioprocessing Lab</td>
<td>• Burnsides Research Lab</td>
</tr>
<tr>
<td>• Digital Computer Lab</td>
<td>• Materials Science & Engineering</td>
<td>• Engineering:</td>
<td>• Biomedical Animal Swine</td>
</tr>
<tr>
<td>• Loomis Laboratory</td>
<td>• Mechanical Engineering Building</td>
<td>• Transportation</td>
<td>Research Replacement</td>
</tr>
<tr>
<td>• Micro /& Nanotechnology Lab</td>
<td>• Newmark Civil Engineering</td>
<td>• Ceramics</td>
<td>Engineering:</td>
</tr>
<tr>
<td>• Seitz Materials Lab</td>
<td>LAS:</td>
<td>• VC of Research:</td>
<td>• Aeronautics Lab</td>
</tr>
<tr>
<td>• Superconductivity Lab</td>
<td>• Roger Adams Renovation/Addition</td>
<td>• Natural Resources Building</td>
<td>LAS:</td>
</tr>
<tr>
<td>VC of Research:</td>
<td>• Burrill Hall Renovation/Addition</td>
<td></td>
<td>• Ethnic Studies Houses</td>
</tr>
<tr>
<td>• Water Survey</td>
<td>• Morrill Hall Renovation</td>
<td></td>
<td>• Shelford Vivarium</td>
</tr>
<tr>
<td>Education:</td>
<td>• Psychology Lab</td>
<td></td>
<td>VC of Research:</td>
</tr>
<tr>
<td>• Children’s Research Center</td>
<td></td>
<td>• Natural Resource Studies Annex</td>
<td>• Natural Survey Greenhouses</td>
</tr>
</tbody>
</table>
Research Facility Recommendations

• Most research laboratories are custom planned around specific technologies. Future renovations should be **more modular**, opening planning where feasible.

• Lab partition systems are primarily block walls, making renovation more costly. Block should be used for corridor walls, with interior lab partitions dry wall for increased **flexibility**.

• **Consider lab zoning** of open labs, enclosed lab support, and specialized core labs.

• Most fume hood systems are 100% exhausted. Hoods should be converted to VAV exhaust with motion sensors, to **improve energy efficiency**.

• Original casework is metal fixed floor mounted. Newer fit-outs for new PIs are **flexible modular systems** providing more flexibility and adaptability to new uses.

• Some older labs (Ag Bioprocessing) should not be fitted-out for **more intense** BSL2-3 level programs requiring major MEP systems upgrades.

• Current **FCI system** not consistently maintained by all colleges, needs to be used as a strategic facilities planning tools vs. just deferred maintenance.
Facilities Assessment
Detailed Analysis
Facility Assessment

ACES

<table>
<thead>
<tr>
<th>Building Number</th>
<th>Name</th>
<th>Year of Construction</th>
<th>AGE</th>
<th>GSF (SF)</th>
<th>NASF (SF)</th>
<th>REPLACEMENT VALUE</th>
<th>FCI</th>
<th>RI</th>
<th>UIRUC Assessment</th>
<th>FY2014 EUI (kBtu/SF)</th>
<th>FY2014 zEPI</th>
<th>Flexibility / Adaptability Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0073</td>
<td>Agricultural Bioprocess Lab</td>
<td>1925</td>
<td>86</td>
<td>24,281</td>
<td>24,280</td>
<td>$6,464,550</td>
<td>0.45</td>
<td>0.49</td>
<td>Poor</td>
<td>427</td>
<td>118</td>
<td>3. Semi-open Planning, Modular configuration, fixed block partitions within module, Services on wall and below ceilings, fixed Casework & Fume hoods</td>
<td>Metabolic Kitchen needs improved space conditioning to allow it to function year round in a safe manner. First floor BSL-2 lab needs proper HVAC to allow it to safely function.</td>
</tr>
<tr>
<td>0336</td>
<td>Madigan Laboratory, Edward R</td>
<td>1991</td>
<td>20</td>
<td>171,007</td>
<td>173,189</td>
<td>$47,923,128</td>
<td>0.05</td>
<td>0.04</td>
<td>Poor</td>
<td>431</td>
<td>120</td>
<td>4. Semi-open Planning, Modular Configuration, Fixed Block Partitions @ Corridor only, Services in wall or above ceilings, Fixed & moveable casework</td>
<td>Madigan Laboratory: Biosciences Double lab suite</td>
</tr>
</tbody>
</table>
Existing Conditions

Education

<table>
<thead>
<tr>
<th>Building Number</th>
<th>Name</th>
<th>Year of Construction</th>
<th>AGE</th>
<th>GSF (SF)</th>
<th>NASF (SF)</th>
<th>REPLACEMENT VALUE</th>
<th>FCI</th>
<th>RI</th>
<th>UIUC Assessment</th>
<th>FY2014 EUI (kBtu/SF)</th>
<th>FY2014 zEPI</th>
<th>Flexibility / Adaptability Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0075</td>
<td>Children's Research Center</td>
<td>1967</td>
<td>44</td>
<td>46,806</td>
<td>46,806</td>
<td>$ 10,757,891</td>
<td>0.26</td>
<td>0.34</td>
<td>Poor</td>
<td>107</td>
<td>159</td>
<td>4. Semi-open Planning, Modular Configuration, Fixed Block Partitions @ Corridor only, Services in wall or above ceilings, Fixed & moveable casework</td>
<td>Listed as problematic, old, with flooding issues on the south side of the basement, mold issues on the north side of the first floor, along with pipe and radiator leaks.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Building Number</th>
<th>Name</th>
<th>Year of Construction</th>
<th>AGE</th>
<th>GSF (SF)</th>
<th>NASF (SF)</th>
<th>REPLACEMENT VALUE</th>
<th>FCI</th>
<th>RI</th>
<th>UIUC Assessment</th>
<th>FY2014 ELI (kBTU/SF)</th>
<th>FY2014 zEPI</th>
<th>Flexibility / Adaptability Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0024</td>
<td>Newmark Civil Engineering Building</td>
<td>1967</td>
<td>44</td>
<td>210,926</td>
<td>184,395</td>
<td>$ 71,422,844</td>
<td>0.18</td>
<td>0.20</td>
<td>Poor</td>
<td>251</td>
<td>111</td>
<td>1. Custom Planning, Non-Modular configuration, Fixed block Partitions, Services in wall, fixed casework & Hoods / Equipment</td>
<td></td>
</tr>
<tr>
<td>0034</td>
<td>Materials Science and Eng Bldg</td>
<td>1909</td>
<td>108</td>
<td>100,630</td>
<td>101,803</td>
<td>$ 13,085,758</td>
<td>0.52</td>
<td>0.95</td>
<td>Critical</td>
<td>187</td>
<td>52</td>
<td>1. Custom Planning, Non-Modular configuration, Fixed block Partitions, Services in wall, fixed casework & Hoods / Equipment</td>
<td>(Plan review only) Assessment by College of Engineering</td>
</tr>
<tr>
<td>0042</td>
<td>Transportation Building</td>
<td>1912</td>
<td>99</td>
<td>51,445</td>
<td>51,445</td>
<td>$ 10,705,640</td>
<td>0.21</td>
<td>0.33</td>
<td>Poor</td>
<td>253</td>
<td>376</td>
<td>1. Custom Planning, Non-Modular configuration, Fixed block Partitions, Services in wall, fixed casework & Hoods / Equipment</td>
<td>(Plan review only)</td>
</tr>
<tr>
<td>0055</td>
<td>Ceramics Building</td>
<td>1915</td>
<td>96</td>
<td>54,017</td>
<td>53,998</td>
<td>$ 6,236,769</td>
<td>0.63</td>
<td>0.80</td>
<td>Critical</td>
<td>151</td>
<td>225</td>
<td>1. Custom Planning, Non-Modular configuration, Fixed block Partitions, Services in wall, fixed casework & Hoods / Equipment</td>
<td>(Plan review only)</td>
</tr>
<tr>
<td>0066</td>
<td>Seitz Materials Research Lab</td>
<td>1966</td>
<td>45</td>
<td>124,473</td>
<td>131,322</td>
<td>$ 36,313,159</td>
<td>0.22</td>
<td>0.29</td>
<td>Poor</td>
<td>609</td>
<td>270</td>
<td>4. Semi-open Planning, Modular Configuration, Fixed Block Partitions @ Corridor only, Services in wall or above ceilings, Fixed & moveable casework</td>
<td>Existing curtainwall is original from 1963 and leaks. (Plan review only)</td>
</tr>
<tr>
<td>0067</td>
<td>Loomis Laboratory of Physics</td>
<td>1959</td>
<td>52</td>
<td>183,191</td>
<td>175,513</td>
<td>$ 33,607,229</td>
<td>0.27</td>
<td>0.36</td>
<td>Poor</td>
<td>229</td>
<td>102</td>
<td>2. Custom Planning, Modular configuration, fixed block partitions within module, Services in wall, fixed Casework & Fume hoods</td>
<td>(Plan review only)</td>
</tr>
<tr>
<td>0112</td>
<td>Mechanical Engineering Building</td>
<td>1949</td>
<td>62</td>
<td>101,157</td>
<td>99,940</td>
<td>$ 26,521,078</td>
<td>0.26</td>
<td>0.39</td>
<td>Poor</td>
<td>281</td>
<td>125</td>
<td>1. Custom Planning, Non-Modular configuration, Fixed block Partitions, Services in wall, fixed casework & Hoods / Equipment</td>
<td>(Plan review only)</td>
</tr>
<tr>
<td>0152</td>
<td>Civil Engineering Hydroystems Lab</td>
<td>1970</td>
<td>41</td>
<td>31,847</td>
<td>31,870</td>
<td>$ 9,634,938</td>
<td>0.32</td>
<td>0.40</td>
<td>Poor</td>
<td>161</td>
<td>72</td>
<td>1. Custom Planning, Non-Modular configuration, Fixed block Partitions, Services in wall, fixed casework & Hoods / Equipment</td>
<td>(Plan review only)</td>
</tr>
<tr>
<td>0210</td>
<td>Digital Computer Laboratory</td>
<td>1958</td>
<td>53</td>
<td>194,689</td>
<td>195,280</td>
<td>$ 43,559,157</td>
<td>0.19</td>
<td>0.25</td>
<td>Poor</td>
<td>189</td>
<td>281</td>
<td>1. Custom Planning, Non-Modular configuration, Fixed block Partitions, Services in wall, fixed casework & Hoods / Equipment</td>
<td>(Plan review only)</td>
</tr>
<tr>
<td>0237</td>
<td>Micro and Nanotechnology Laboratory</td>
<td>1989</td>
<td>22</td>
<td>147,347</td>
<td>88,065</td>
<td>$ 27,225,295</td>
<td>0.05</td>
<td>0.07</td>
<td>Good</td>
<td>760</td>
<td>338</td>
<td>2. Custom Planning, Modular configuration, fixed block partitions within module, Services in wall, fixed Casework & Fume hoods</td>
<td>(Plan review only)</td>
</tr>
</tbody>
</table>
Existing Conditions

Engineering
<table>
<thead>
<tr>
<th>Building Number</th>
<th>Name</th>
<th>Year of Construction</th>
<th>AGE</th>
<th>GSF (SF)</th>
<th>NASF (SF)</th>
<th>REPLACEMENT VALUE</th>
<th>AGE</th>
<th>GSF (SF)</th>
<th>NASF (SF)</th>
<th>REPLACEMENT VALUE</th>
<th>FCI</th>
<th>RI</th>
<th>FY2014 EUI (kBTU/SF)</th>
<th>FY2014 zEPI</th>
<th>Flexibility / Adaptability</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0026</td>
<td>Altgeld Hall</td>
<td>1896</td>
<td>115</td>
<td>79,721</td>
<td>79,720</td>
<td>$ 37,619,071</td>
<td>0.34</td>
<td>0.58</td>
<td>Poor</td>
<td>123</td>
<td>183</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1. Custom Planning, Non-Modular configuration, Fixed block Partitions, Services (Plan review only) in wall, fixed casework & Hoods/Equipment</td>
</tr>
<tr>
<td>0056</td>
<td>Shelford Vivarium</td>
<td>1916</td>
<td>95</td>
<td>24,278</td>
<td>24,278</td>
<td>$ 3,462,771</td>
<td>0.50</td>
<td>0.73</td>
<td>Critical</td>
<td>232</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2. Custom Planning, Modular configuration, fixed block partitions within module, Services (Plan review only) in wall, fixed Casework & Fume hoods</td>
</tr>
<tr>
<td>0076</td>
<td>Psychology Laboratory</td>
<td>1969</td>
<td>42</td>
<td>154,523</td>
<td>156,230</td>
<td>$ 34,203,434</td>
<td>0.58</td>
<td>0.63</td>
<td>Critical</td>
<td>262</td>
<td>116</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4. Semi-open Planning, Modular configuration, Fixed Block Partitions @ Corridor only, Services in wall or above ceilings, Fixed & moveable casework</td>
</tr>
<tr>
<td>0116</td>
<td>Roger Adams Laboratory</td>
<td>1950</td>
<td>61</td>
<td>266,920</td>
<td>280,130</td>
<td>$ 100,669,827</td>
<td>0.19</td>
<td>0.25</td>
<td>Poor</td>
<td>489</td>
<td>136</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3. Semi open Planning, Modular configuration, fixed block partitions within module, Services on wall and below ceilings, fixed Casework & Fume hoods</td>
</tr>
<tr>
<td>0138</td>
<td>Burrill Hall</td>
<td>1959</td>
<td>52</td>
<td>171,832</td>
<td>178,640</td>
<td>$ 40,088,602</td>
<td>0.26</td>
<td>0.30</td>
<td>Poor</td>
<td>405</td>
<td>112</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2. Custom Planning, Modular configuration, fixed block partitions within module, Services in wall, fixed Casework & Fume hoods</td>
</tr>
<tr>
<td>0242</td>
<td>Morrill Hall</td>
<td>1963</td>
<td>48</td>
<td>170,679</td>
<td>170,128</td>
<td>$ 56,991,135</td>
<td>0.24</td>
<td>0.32</td>
<td>Poor</td>
<td>454</td>
<td>126</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2. Custom Planning, Modular configuration, fixed block partitions within module, Services in wall, fixed Casework & Fume hoods</td>
</tr>
</tbody>
</table>
Existing Conditions

LAS

Rodger Adams: Bioplant

Rodger Adams: Biotech

Morrill / Burrill: Lab

Morrill / Burrill: Lab with Support

Psychology Open Lab
<table>
<thead>
<tr>
<th>Building Number</th>
<th>Name</th>
<th>Year of Construction</th>
<th>AGE</th>
<th>GSF (SF)</th>
<th>NASF (SF)</th>
<th>REPLACEMENT VALUE</th>
<th>FCI</th>
<th>RI</th>
<th>URUC Assessment FY2014 EUI (kBTU/SF)</th>
<th>FY2014 zEPI</th>
<th>Flexibility / Adaptability Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0109</td>
<td>Natural Resources Building</td>
<td>1940</td>
<td>71</td>
<td>140,703</td>
<td>140,587</td>
<td>$ 47,376,413</td>
<td>0.190.28</td>
<td>111</td>
<td>166</td>
<td></td>
<td>1. Custom Planning, Non-Modular configuration, Fixed block Partitions, Services (Plan review only) in wall, fixed casework & Hoods/Equipment</td>
<td></td>
</tr>
<tr>
<td>0110</td>
<td>Nuclear Physics Laboratory</td>
<td>1947</td>
<td>64</td>
<td>36,605</td>
<td>36,605</td>
<td>$ 21,295,691</td>
<td>0.140.19</td>
<td>Poor</td>
<td>180</td>
<td>80</td>
<td>1. Custom Planning, Non-Modular configuration, Fixed block Partitions, Services in wall, fixed casework & Hoods/Equipment The existing facility is in very poor condition. The facility requires mechanical, HVAC, electrical, and life safety upgrades. (Plan review only)</td>
<td></td>
</tr>
<tr>
<td>0321</td>
<td>Natural Resource Studies Annex</td>
<td>1973</td>
<td>38</td>
<td>63,562</td>
<td>64,709</td>
<td>$ 11,160,361</td>
<td>0.580.62</td>
<td>Critical</td>
<td>396</td>
<td>109</td>
<td>2. Custom Planning, Modular configuration, fixed block partitions within module, Services in wall, fixed Casework & Fume hoods</td>
<td></td>
</tr>
<tr>
<td>1106, 0289-2</td>
<td>Water Survey Research Center #3</td>
<td>1964</td>
<td>46</td>
<td>8,258</td>
<td>11,259</td>
<td>$ 1,044,723</td>
<td>1.271.54</td>
<td></td>
<td></td>
<td></td>
<td>4. Semi-open Planning, Modular Configuration, Fixed Block Partitions @ Corridor only, Services in wall or above ceilings, Fixed & moveable casework Building is past its service life. The roof leaks, fume hoods need upgraded controls, and lab services need upgrading</td>
<td></td>
</tr>
</tbody>
</table>
Existing Conditions
Vice Chancellor of Research- PRI

Water Survey Laboratory 2:
Entry court

Water Survey Laboratory 2:
Bucket sterilizer

Water Survey Laboratory 3:
100% Exhausted hoods

Water Laboratory 3:
Entry

Water Laboratory 3:
Instrument Laboratory

Water Survey Laboratory 3:
Laboratory

Water Survey Laboratory 2:
Major Coldrooms

Water Survey Laboratory 3:
Laboratory
Research Facility Trends
Space Demand – Research Needs

Projected Range

<table>
<thead>
<tr>
<th>Growth</th>
<th>NASF</th>
<th>GSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projected Range</td>
<td>220,698</td>
<td>367,830</td>
</tr>
<tr>
<td></td>
<td>182,462</td>
<td>304,104</td>
</tr>
</tbody>
</table>

Growth

<table>
<thead>
<tr>
<th>NASF</th>
<th>GSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,034,300</td>
<td>5,057,170</td>
</tr>
</tbody>
</table>

Total Square footage

<table>
<thead>
<tr>
<th>High Growth</th>
<th>NASF</th>
<th>GSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,254,999</td>
<td>5,424,999</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Low Growth</th>
<th>NASF</th>
<th>GSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,216,763</td>
<td>5,361,272</td>
<td></td>
</tr>
</tbody>
</table>

Existing

<table>
<thead>
<tr>
<th>NASF</th>
<th>GSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,254,999</td>
<td>5,424,999</td>
</tr>
</tbody>
</table>

Research Expenditures

<table>
<thead>
<tr>
<th>Year</th>
<th>NASF</th>
<th>GSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>$524,680</td>
<td>$494,748</td>
</tr>
<tr>
<td>2006</td>
<td>$492,347</td>
<td>$492,347</td>
</tr>
<tr>
<td>2007</td>
<td>$515,133</td>
<td>$515,133</td>
</tr>
<tr>
<td>2008</td>
<td>$551,805</td>
<td>$551,805</td>
</tr>
<tr>
<td>2009</td>
<td>$518,333</td>
<td>$518,333</td>
</tr>
<tr>
<td>2010</td>
<td>$545,669</td>
<td>$545,669</td>
</tr>
<tr>
<td>2011</td>
<td>$583,754</td>
<td>$583,754</td>
</tr>
<tr>
<td>2012</td>
<td>$615,233</td>
<td>$615,233</td>
</tr>
<tr>
<td>2013</td>
<td>$665,070</td>
<td>$665,070</td>
</tr>
<tr>
<td>2014</td>
<td>$743,487</td>
<td>$743,487</td>
</tr>
<tr>
<td>2015</td>
<td>$702,488</td>
<td>$702,488</td>
</tr>
<tr>
<td>2016</td>
<td>$739,986</td>
<td>$739,986</td>
</tr>
<tr>
<td>2017</td>
<td>$750,016</td>
<td>$750,016</td>
</tr>
<tr>
<td>2018</td>
<td>$777,325</td>
<td>$777,325</td>
</tr>
<tr>
<td>2019</td>
<td>$796,034</td>
<td>$796,034</td>
</tr>
<tr>
<td>2020</td>
<td>$814,743</td>
<td>$814,743</td>
</tr>
<tr>
<td>2021</td>
<td>$833,453</td>
<td>$833,453</td>
</tr>
<tr>
<td>2022</td>
<td>$852,162</td>
<td>$852,162</td>
</tr>
<tr>
<td>2023</td>
<td>$872,973</td>
<td>$872,973</td>
</tr>
<tr>
<td>2024</td>
<td>$894,885</td>
<td>$894,885</td>
</tr>
<tr>
<td>2025</td>
<td>$918,001</td>
<td>$918,001</td>
</tr>
</tbody>
</table>

Historic Data

<table>
<thead>
<tr>
<th>Year</th>
<th>NASF</th>
<th>GSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>$524,680</td>
<td>$494,748</td>
</tr>
<tr>
<td>2006</td>
<td>$492,347</td>
<td>$492,347</td>
</tr>
<tr>
<td>2007</td>
<td>$515,133</td>
<td>$515,133</td>
</tr>
<tr>
<td>2008</td>
<td>$551,805</td>
<td>$551,805</td>
</tr>
<tr>
<td>2009</td>
<td>$518,333</td>
<td>$518,333</td>
</tr>
<tr>
<td>2010</td>
<td>$545,669</td>
<td>$545,669</td>
</tr>
<tr>
<td>2011</td>
<td>$583,754</td>
<td>$583,754</td>
</tr>
<tr>
<td>2012</td>
<td>$615,233</td>
<td>$615,233</td>
</tr>
<tr>
<td>2013</td>
<td>$665,070</td>
<td>$665,070</td>
</tr>
<tr>
<td>2014</td>
<td>$743,487</td>
<td>$743,487</td>
</tr>
<tr>
<td>2015</td>
<td>$702,488</td>
<td>$702,488</td>
</tr>
<tr>
<td>2016</td>
<td>$739,986</td>
<td>$739,986</td>
</tr>
<tr>
<td>2017</td>
<td>$750,016</td>
<td>$750,016</td>
</tr>
<tr>
<td>2018</td>
<td>$777,325</td>
<td>$777,325</td>
</tr>
<tr>
<td>2019</td>
<td>$796,034</td>
<td>$796,034</td>
</tr>
<tr>
<td>2020</td>
<td>$814,743</td>
<td>$814,743</td>
</tr>
<tr>
<td>2021</td>
<td>$833,453</td>
<td>$833,453</td>
</tr>
<tr>
<td>2022</td>
<td>$852,162</td>
<td>$852,162</td>
</tr>
<tr>
<td>2023</td>
<td>$872,973</td>
<td>$872,973</td>
</tr>
<tr>
<td>2024</td>
<td>$894,885</td>
<td>$894,885</td>
</tr>
<tr>
<td>2025</td>
<td>$918,001</td>
<td>$918,001</td>
</tr>
</tbody>
</table>
Projected Space
Growth Model- PI Faculty growth an additional 80 PI Investigators by 2025

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Expenditures</td>
<td>$ 665,070</td>
<td>$ 683,779</td>
<td>$ 702,488</td>
<td>$ 721,197</td>
<td>$ 739,906</td>
<td>$ 758,616</td>
<td>$ 777,325</td>
<td>$ 796,034</td>
<td>$ 814,743</td>
<td>$ 833,453</td>
<td>$ 852,162</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pi’s Herd Count</td>
<td>1106</td>
<td>1137</td>
<td>1145</td>
<td>1153</td>
<td>1159</td>
<td>1165</td>
<td>1171</td>
<td>1175</td>
<td>1180</td>
<td>1183</td>
<td>1186</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pi’s total Faculty</td>
<td>1452</td>
<td>1483</td>
<td>1491</td>
<td>1499</td>
<td>1505</td>
<td>1511</td>
<td>1517</td>
<td>1521</td>
<td>1526</td>
<td>1529</td>
<td>1532</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASF/PI</td>
<td>2,743</td>
<td>2,745</td>
</tr>
<tr>
<td>GSF</td>
<td>5,057,168</td>
<td>5,202,293</td>
<td>5,239,838</td>
<td>5,273,912</td>
<td>5,304,634</td>
<td>5,332,124</td>
<td>5,356,497</td>
<td>5,377,864</td>
<td>5,396,333</td>
<td>5,412,011</td>
<td>5,424,999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pi’s Herd Count</td>
<td>1452</td>
<td>1483</td>
<td>1491</td>
<td>1499</td>
<td>1505</td>
<td>1511</td>
<td>1517</td>
<td>1521</td>
<td>1526</td>
<td>1529</td>
<td>1532</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASF/PI</td>
<td>2,090</td>
<td>2,100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSF</td>
<td>5,057,168</td>
<td>5,190,896</td>
<td>5,219,620</td>
<td>5,245,687</td>
<td>5,269,190</td>
<td>5,290,221</td>
<td>5,308,866</td>
<td>5,325,213</td>
<td>5,339,342</td>
<td>5,351,336</td>
<td>5,361,272</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Net Zero Growth requires reduced allocation of 2,100 to 1,980 NASF/PI or 6% improved utilization
Research Facility Design & Planning – Contemporary Guidelines

Science Trends
- More modularity & flexibility
- More dry labs (computational biology and chemistry)
- Undergraduate research (Maker Space)
- Big data, computing at teraflop level
- More Robotics in repetitive testing
- More Artificial Intelligence – Robot PIs
- Integration of clinical and biomedical research

Facility Trends
- Just in time lab services vs just in case
- More open collaboration areas
- Higher basement floor heights and weights for imaging technology
- Demand-controlled ventilation systems, zoned sensors
- Metered energy usage
- Sustainable lab facilities - toward net zero energy & water consumption

Lab Planning Trends
- Open lab planning
- Moveable lab furniture systems
- Maximize daylighting and visibility
- Zoning of open lab space
- Shared specialized lab support space
- Open floor flexibility, no embedded fixed elements
- Agile office and workspace, shared technology
- Totally accessible services, no ceilings if possible
Innovation Places - Bio & Chemical Sciences

Conference
Collaboration
Interaction
Faculty Offices

Biosciences Open Labs
Animal Space
Lab Support
Shared Lab Support
Innovation Places - Engineering Sciences
Laboratory Flexibility / Adaptability

Research Cluster 1 – Remote Sensing and Image Signal Processing

Instructional Cluster – Capstone / Senior Design

Research Cluster 6 – Laser, Optics and Optical Physics

Research Cluster 2 – Bio-imaging

Creating a Flexible and Modular Lab Block – Kit-of-Parts / Plug and Play
3

PRELIMINARY MASTER PLAN
Campus Framework

• Focus the undergraduate experience along the Main Quad
• Locate common and collaborative functions along major campus axes
• Support interdisciplinary collaboration, resources
• Strengthen and define the primary western axis ("Military Axis")
• Enhance east-west pedestrian walks and connections to the Main Quad
Campus Framework

- Respect the campus structure and character to define and connect existing and emerging districts
- Create new quads and public spaces as district focal points
- Increase density in districts adjacent to the core
- Integrate student and residence life into campus fabric
Preliminary Master Plan

Design Goals:
- Densify the core of campus
- Better define campus perimeter districts
- Strengthen east-west pedestrian corridors
- Provide north-south connections on east side
- Create additional quads and courtyards with future opportunities for development zones
- Reinforce campus gateways
Mathews Avenue
Block K – W Oregon to W Nevada St (Red Herring, Foreign Languages block)

1 lane, 1-way south, on-street parking both sides, separate bike path picks up again west of curb
NAVYA ARMA
Electric, 100% Autonomous Shuttle, Carries up to 15 passengers. French Company. Tested at U of M.
Varden Labs Partners with California Universities
Electric, 100% Autonomous, Carries up to 4 Passengers. Programmable Routing. Canadian Company.
Proposed Mathews Avenue

8’ Sidewalk
12’ Vegetated Buffer
10’ Autonomous Bus Lane
5’ Bike Lane
5’ Bike Lane
10’ Autonomous Bus Lane
12’ Vegetated Buffer
8’ Sidewalk

30’
(Match Existing Street Width)
4

DISTRICT-LEVEL INITIATIVES
Carle Illinois College of Medicine

- Illinois Existing Building
- Illinois Proposed Building
- Proposed Building Renovation
- Future Development Zone
- Campus Landscape
- Athletic / Recreation Field
- Memorable Open Space
Preliminary Master Plan

- Illinois Existing Building
- Illinois Proposed Building
- Proposed Building Renovation
- Future Development Zone
- Campus Landscape
- Athletic / Recreation Field
- Memorable Open Space

Key:
- University Avenue
- North Quad
- National Center for Supercomputing Applications
- Wright Street
- Springfield Avenue
- Harvey Street
- Transformed Mathews Avenue
- Goodwin Avenue

Location:
- Newmark Civil Engineering Lab
A New University Avenue Campus Gateway

- National Center for Supercomputing Applications
- Digital Computer Laboratory
- Pedestrian Gateway
- Vehicular Gateway
- Future Development Zone
- Harvey Street
- University Avenue
- goods Avenue
Preliminary Master Plan

- Illinois Existing Building
- Illinois Proposed Building
- Proposed Building Renovation
- Future Development Zone
- Campus Landscape
- Athletic / Recreation Field
- Memorable Open Space

University Avenue
Springfield Avenue
Green Street
Daniel Street
Gregory Drive
Neil Street
1st Street
4th Street
Wright Street
Goodwin Avenue
Lincoln Avenue
Preliminary Master Plan

- Illinois Existing Building
- Illinois Proposed Building
- Proposed Building Renovation
- Future Development Zone
- Campus Landscape
- Athletic / Recreation Field
- Memorable Open Space

Key:
- Illinois Existing Building
- Illinois Proposed Building
- Proposed Building Renovation
- Future Development Zone
- Campus Landscape
- Athletic / Recreation Field
- Memorable Open Space
An Expanded Sciences Corridor

- Rogers Adams Laboratory
 - Expansion & Renovation
- Burrill Hall
 - Expansion
- Proposed Science Facility
- Proposed Science Facility
- Loomis Lab
 - Expansion & Renovation
- Mechanical Engineering Building
- Transportation Building
- Krannert Center for the Performing Arts
 - Expansion & Renovation
- Morrill Hall
- Goodwin Avenue
- Mathews Avenue
- Illinois Street
- Green Street
- ISR
- Housing
- N

DRAFT
“The Illinois Experience”

- Illinois Street serves as a prominent “gateway street” for first-time visitors.
- Celebrate the diversity and excellence of the University along Illinois Street.
- Enhance gateways at Lincoln & Green (vehicular) and Lincoln & Illinois (pedestrian).
- Showcase the arts and sciences thru renovation of existing facilities and new buildings.
- Create an Arts Park to better link KCPA to Spurlock Museum and Alumni Welcome Center.
- Strengthen corridor from Lincoln to Illini Union.
Preliminary Master Plan
Strengthening the Cultural Centers
Defining the South Quad
Preliminary Master Plan

- Illinois Existing Building
- Illinois Proposed Building
- Proposed Building Renovation
- Future Development Zone
- Campus Landscape
- Athletic / Recreation Field
- Memorable Open Space
Preliminary Master Plan

- Illinois Existing Building
- Illinois Proposed Building
- Proposed Building Renovation
- Future Development Zone
- Campus Landscape
- Athletic / Recreation Field
- Memorable Open Space
The Military Axis Reborn
Ikenberry Commons

- Ice Arena
- Pedestrian Gateway
- Housing Expansion
- Ikenberry Commons
- Art & Design Expansion
- Design Center
- Academics
- Parking Structure

4th Street
Preliminary Master Plan

- Illinois Existing Building
- Illinois Proposed Building
- Proposed Building Renovation
- Future Development Zone
- Campus Landscape
- Athletic / Recreation Field
- Memorable Open Space
A New West Campus Identity

- Daniel Street
- Gateway
- Sherman Hall
- Housing Expansion
- Armory
- Parking
- Main Library Expansion
- 4th Street
- 6th Street
- Gregory Drive
- Relocated
- DRES
- Cultural Studies
- Campus Honors

SMITHGROUPJJR
DRAFT
A New West Campus Identity

Main Library Renovation & Expansion
Turner Student Services
Henry Admin Building
Future Development Zone
Parking
Armory
Ikenberry Commons
Gregory Drive
Gateway
Daniel Street
John Street
Sherman Hall Housing Expansion
Relocated DRES Cultural Studies Campus Honors
N
Future Development Zone
Henry Admin Building
Turner Student Services
Parking
Armory
Ikenberry Commons
Gregory Drive
Gateway
Daniel Street
John Street
Sherman Hall Housing Expansion
Relocated DRES Cultural Studies Campus Honors
N
Student Affairs

- Illinois Existing Building
- Illinois Proposed Building
- Proposed Building Renovation
- Future Development Zone
- Campus Landscape
- Athletic / Recreation Field
- Memorable Open Space

1. Kenney Gym Renovation
2. Goodwin Green Replacement
 Apartments, ISR Dining
 Reno/Expansion, ISR Dorm Expansion
3. Illini Union Reno/Expansion, Henry Admin. Building Reno/Expansion
4. Turner Renovation & Partial Relocation
5. Sherman Hall Expansion, Additional Champaign Area Residences
6. Illini Union South
7. Ikenberry Commons Buildout, Ice Arena
Preliminary Master Plan

- Illinois Existing Building
- Illinois Proposed Building
- Future Development Zone
- Campus Landscape
- Athletic / Recreation Field
- Memorable Open Space

Kirby Avenue
Hazelwood Drive
1st Street
Windsor Road
St. Mary's Road
Lincoln Avenue
4th Street
Reimagining the Athletics Campus

ACES Research Plots

Future Development Zone

Demirjian Golf Practice Facility

Track & Soccer Stadium

Fighting Illini Promenade

Illinois Field

Kirby Avenue

Research Park

Ubbon Basketball Complex Renovation & Expansion

Performance Facility

Memorial Stadium

Reimagining the Athletics Campus

Demirjian Golf Practice Facility

Future Development Zone

Track & Soccer Stadium

Fighting Illini Promenade

Illinois Field

Kirby Avenue

Research Park

Ubbon Basketball Complex Renovation & Expansion

Performance Facility

Memorial Stadium
Design Goals:

- Celebrate the Land Grant Mission along corridor
- Community Connection Center near Japan House
- “Legacy Corridor” focused along Lincoln Avenue from Hazelwood Drive to Curtis Road, then south along Race Street to Airport Road
- Improve section of Lincoln from Windsor to Curtis Road with paving, 2-lane roadway with bike lanes
- Extend MTD service along Lincoln to Curtis
Orchard Downs Neighborhood
5

CAMPUS LANDSCAPE GUIDELINES
Campus Typologies

EXISTING LANDSCAPES

Campus typologies represent the performance of the landscape and its interplay between various building types and program. Even though variability in the built environment exists, the campus can be successfully knit together through the various campus typologies, connecting disparate building uses while providing unity and definition thereby creating a more cohesive and unified campus experience that is uniquely defined as the University of Illinois.

SA Sacred Landscapes
CQ Campus Quads
UC Urban Campus
UT Urban Town/Gown
AL Active Landscapes
PL Passive Landscapes
LL Learning & Research Landscapes
CL Contemplative Landscapes
Campus Typologies

URBAN TOWN/GOWN

The Urban Town/Gown forms the northwestern edge of campus and represents a primarily vehicular oriented typology derived from a typical city grid with a mixture of business, retail, cultural and residential uses.

Though the current streetscapes lack organized definition, reinforcing visual connectivity and unifying existing disjointed uses might be achieved by strengthening and articulating signage and wayfinding elements, lighting, appropriate site furnishings and a cohesive palette of materials. Materials consistent with the existing vernacular present along Green Street, just to the north would reinforce this urban context.
Sacred landscapes are pedestrian oriented spaces consisting of open formal lawn areas, trans-versed by pedestrian walkways and punctuated with iconic sweeping views and vistas. Framed by historic campus architecture these landscapes represent the heart of the University and provide for a range of uses from passive recreation to large scale programmed campus events.

A cross section of the Main Quad is formally defined by generous pedestrian walks, taxus border hedges, an ornamental understory at interface with building masses and open lawns flanked by a double allee of large canopy trees.

Sacred Landscapes can be further defined by a simplified materials palette of mowed lawn, cast in place concrete walks and enriched embellishments at key entry points and gateways.
Campus Typologies

CAMPUS QUADS

Campus Quads are composed of a series of formal and informal pedestrian oriented open lawn spaces. Framed with buildings and consisting of walkways and large canopy trees, the Quads recognize the formality seen in the Sacred Landscapes but provide more casual flexibility in respect to the surrounding contemporary tenant anchors. They allow for passive recreational uses in addition to a wide range of programmed events.

The Quads should emphasize a simplified materials palette of mowed lawn, cast in place concrete walks and minor embellishments at key entry points and gateways. Buildings and lawn areas are buffered by a landscape palette that maintains a canopy tree interface with greater diversity and lower stratified landscape zone that embraces a stylized prairie landscape.
The Urban Campus consists primarily of University focused uses set within the campus framework but laid out in a series of disconnected superblocks. The urban campus is the transitional zone between the small scale residential neighborhoods to the east and the Campus Quads to the west, the backbone of the University.

The areas north of Nevada Street and east of Mathews Avenue are predominantly laid out on the city grid in superblocks; they are defined by the urban grid versus traditional open campus green space. Pedestrian circulation is presently maintained on the perimeter of these developed areas rather than integrally woven into the fabric of uses with open space.

Generally, this typology is less dense, the material palette is inconsistent and the urban assets are limited due to disjointed circulation patterns. A strengthened material palette would reinforce connectivity and unify existing disjointed uses.
Campus Typologies

ACTIVE LANDSCAPES

Comprised of indoor and outdoor recreational facilities and set within large scale auto-oriented blocks, Active Landscapes prioritize vehicular circulation and their associated parking accommodations, in contrast to the more pedestrian oriented typologies to the north.

Connecting various uses with an enhanced wayfinding and directional signage system would reinforce connectivity while serving to clearly direct heavy vehicular traffic flow. Likewise, accommodations should be made for pedestrians with an improved sidewalk network and clearly identified crosswalks at roadway intersections and driveway entries. Special accommodations should be made for pedestrian circulation at key threshold locations such as mid-block crossings and iconic entry points surrounding the Stadiums.

Furthermore, the campus character might be emphasized on both a vehicular and pedestrian level by enhancing key gateways, implementing roadway design standards, an enhanced palette of materials, consistent lighting, banner treatments and planting techniques.
Campus Typologies

PASSIVE LANDSCAPES

Situated between the Active Landscape to the north and the more rural Learning and Research Landscape to the south, Passive Landscapes are made up of various campus uses, situated in a suburban context. As a primarily vehicular oriented typology, these uses are linked by their roadway networks and associated parking arrangements, with a secondary focus on pedestrian level circulation. Significant building setbacks result in a high amount of open space from building face to roadway.

Maintaining connectivity between the Passive Landscape and the more urban campus core to the north would be achieved with roadway design standards, lighting strategies, signage and wayfinding and planting techniques.
Campus Typologies

CONTEMPLATIVE LANDSCAPES

Comprised of both designed and naturalized spaces, Contemplative Landscapes provide opportunities for passive recreation, retreat and respite within a green, park-like setting. From ornately designed gardens to the more informal Illini Grove, these landscapes allow for connection with nature and with others.

The streetscapes surrounding these destinations should be welcoming and accessible to both pedestrians and vehicles. Special accommodations should be made for pedestrian circulation and safe passage at key threshold locations such as mid-block crossings and landscape entry points.

Clearly communicating the uses within these landscapes and their associated entry points might be improved with consistent signage and wayfinding elements. Likewise, a strengthened palette of materials and lighting strategies would reinforce the campus character on the periphery and throughout these landscapes.
Learning & Research Landscapes are primarily experienced via vehicular means and set within a distinct rural, agricultural context. The immense scale of these spaces is typically experienced by passing through at a fast pace rather than on foot at a close range.

Roadway character varies from a suburban quality to rural and informal in nature as the surrounding, vast open landscapes comprise 360 degree sprawling views of the surrounding agricultural landscape.

To further define and characterize these landscapes, establishing a unique rural palette of materials that successfully correlates back to the campus core would include fencing, signage, sidewalk treatments and roadway plantings, serving to unify this outlying typology to the rest of the campus to the north.
Transitional Zones

URBAN CAMPUS TO CAMPUS QUADS

The transitional zone between the Campus Quads and the Urban Campus is currently defined from north to south by the Mathews Avenue vehicular corridor. Utilizing a palette of streetscape materials and reinforcing pedestrian connections across Mathews leading into the Campus Quad would strengthen this transitional experience between typologies. Additionally, extending the open spaces of the Campus Quad eastward would support these relationships by creating a common thread between them.

URBAN CAMPUS TO SACRED LANDSCAPES

As Mathews Avenue extends southward, linking the Sacred Landscapes and the Urban Campus would become realized with an alternate roadway configuration focusing primarily on public transit, bicycle and pedestrian circulation.
The materiality that exists within the transition between these landscapes should be reflective of the Sacred Landscape yet complementary to the Urban Town/Gown. Driven by an existing line of rigid architectural edges, the corridor should be softened by carrying through the open spaces of the Sacred Landscape. Given the mix of uses residing along this corridor, a public/private partnership vision becomes essential to knitting these two typologies together.

A similar relationship exists in the transition between the Urban Town/Gown and the Campus Quad, however the architectural qualities are more relaxed and less formal. By strengthening the public/private partnership between uses and carrying material elements of the Campus Quad through to soften the corridor edge, the transition will knit these two typologies together successfully.
Transitional Zones

A dramatic shift occurs in the transitional zone between these two typologies. This is largely due to the change in scale between the landscapes, a variation of uses and a shift from pedestrian oriented to a more vehicular focused environment.

Access between these typologies should be strengthened with improved gateways, streetscape elements, safe crosswalks and by interweaving Campus Quad elements along the periphery of the Active Landscape. Intertwining these distinctively different typologies together will only serve to positively reinforce and unify the campus as a whole.
The primary gateways shown represent opportunities to strengthen and enrich the arrival experience into campus. Currently, the gateways lack University branding, pedestrian/bicycle accessibility and an essential sense of placemaking and campus arrival.

At all gateways, a wayfinding and signage family should be implemented to introduce and direct both vehicles and pedestrians through the campus. Focus should be placed on improving the pedestrian scale of these thresholds by utilizing a consistent campus palette of materials, lighting strategies and planting techniques that would serve to evoke a strong sense of place and the University of Illinois character.

1. Green St & Wright St
2. University Ave & Mathews Ave
3. Green St & Lincoln Ave
4. Kirby Ave & Lincoln Ave
5. Race St & Windsor Rd
6. 4th St & Daniel St
7. Stadium Dr & Neil St
8. Kirby Ave & Neil St
9. St Mary’s Rd & Neil St
Campus Gateways

SIGNAGE, WAYFINDING & FENCING

Gateway Signage - Vehicular

Gateway Signage - Pedestrian

Gateway - Pedestrian

Signage - Wayfinding

Signage - Building

Fencing & Monuments - Urban

Fencing - Rural
6

NEXT STEPS
Master Plan Schedule

- **DISCOVERY**
 - Vision
 - Inventory
 - Assessment

- **ANALYSIS**
 - Analysis/Alternatives

- **MASTER PLANNING**
 - Refinement

- **DOCUMENTATION**
 - Master Plan

Dates
- 2016: January, February, March, April, May, June, July, August, September, October
- 2017: January, February, March, April, May, June, July, August, September, October

- **Events**
 - Red circles: administration/faculty/staff meetings
 - Open circles: public forums
Share your Thoughts.

http://go.fs.illinois.edu/CampusMasterPlanning

About this Interactive Site

The University of Illinois at Urbana-Champaign Master Plan will be a bold vision for the future of campus.

An 18-month process to update the campus master plan began in January of 2016. During the coming months we will evaluate the state of the campus and plan for its future. Join the conversation to help shape the future of the Urbana campus.

Upcoming Townhall Meetings: Preliminary Master Plan Design

Please join us the week of April 10th for two Townhall meetings! See the events page for more information.

Alternatives Input

The master plan team held campus public forums the week of November 20th to share standing facility development sites.
THANK YOU